❤️ SQLite ORM light header only library for modern C++

Sublime's custom image

License Donate using PayPal Twitter URL


SQLite ORM light header only library for modern C++


Branch Travis Appveyor
master Build Status Build status
dev Build Status Build status


  • No raw string queries
  • Intuitive syntax
  • Comfortable interface - one code line per single query
  • Built with modern C++14 features (no macros and external scripts)
  • CRUD support
  • Pure select query support
  • Prepared statements support
  • STL compatible
  • Custom types binding support
  • BLOB support - maps to std::vector<char> or one can bind your custom type
  • FOREIGN KEY support
  • Composite key support
  • JOIN support
  • Transactions support
  • Migrations functionality
  • Powerful conditions
  • ORDER BY and LIMIT, OFFSET support
  • GROUP BY / DISTINCT support
  • INDEX support
  • Follows single responsibility principle - no need write code inside your data model classes
  • Easy integration - single header only lib.
  • The only dependency - libsqlite3
  • C++ standard code style
  • In memory database support - provide :memory: or empty filename
  • COLLATE support
  • Limits setting/getting support

sqlite_orm library allows to create easy data model mappings to your database schema. It is built to manage (CRUD) objects with a primary key and without it. It also allows you to specify table names and column names explicitly no matter how your classes actually named. Take a look at example:

struct User{
    int id;
    std::string firstName;
    std::string lastName;
    int birthDate;
    std::unique_ptr<std::string> imageUrl;
    int typeId;

struct UserType {
    int id;
    std::string name;

So we have database with predefined schema like

CREATE TABLE users (id integer primary key autoincrement, first_name text not null, last_name text not null, birth_date integer not null, image_url text, type_id integer not null)

CREATE TABLE user_types (id integer primary key autoincrement, name text not null DEFAULT 'name_placeholder')

Now we tell sqlite_orm library about our schema and provide database filename. We create storage service object that has CRUD interface. Also we create every table and every column. All code is intuitive and minimalistic.

using namespace sqlite_orm;
auto storage = make_storage("db.sqlite",
                                       make_column("id", &User::id, autoincrement(), primary_key()),
                                       make_column("first_name", &User::firstName),
                                       make_column("last_name", &User::lastName),
                                       make_column("birth_date", &User::birthDate),
                                       make_column("image_url", &User::imageUrl),
                                       make_column("type_id", &User::typeId)),
                                       make_column("id", &UserType::id, autoincrement(), primary_key()),
                                       make_column("name", &UserType::name, default_value("name_placeholder"))));

Too easy isn't it? You do not have to specify mapped type explicitly - it is deduced from your member pointers you pass during making a column (for example: &User::id). To create a column you have to pass two arguments at least: its name in the table and your mapped class member pointer. You can also add extra arguments to tell your storage about column's constraints like primary_key, autoincrement, default_value or unique(order isn't important; not_null is deduced from type automatically).

More details about making storage can be found in tutorial.

If your datamodel classes have private or protected members to map to sqlite then you can make a storage with setter and getter functions. More info in the example.


Let's create and insert new User into our database. First we need to create a User object with any id and call insert function. It will return id of just created user or throw exception if something goes wrong.

User user{-1, "Jonh", "Doe", 664416000, std::make_unique<std::string>("url_to_heaven"), 3 };
auto insertedId = storage.insert(user);
cout << "insertedId = " << insertedId << endl;      //  insertedId = 8
user.id = insertedId;

User secondUser{-1, "Alice", "Inwonder", 831168000, {} , 2};
insertedId = storage.insert(secondUser);
secondUser.id = insertedId;

Note: if we need to insert a new user with specified id call storage.replace(user); instead of insert.

Next let's get our user by id.

    auto user = storage.get<User>(insertedId);
    cout << "user = " << user.firstName << " " << user.lastName << endl;
}catch(std::system_error e) {
    cout << e.what() << endl;
    cout << "unknown exeption" << endl;

Probably you may not like throwing exceptions. Me too. Exception std::system_error is thrown because return type in get function is not nullable. You can use alternative version get_pointer which returns std::unique_ptr and doesn't throw not_found_exception if nothing found - just returns nullptr.

if(auto user = storage.get_pointer<User>(insertedId)){
    cout << "user = " << user->firstName << " " << user->lastName << endl;
    cout << "no user with id " << insertedId << endl;

std::unique_ptr is used as optional in sqlite_orm. Of course there is class optional in C++14 located at std::experimental::optional. But we don't want to use it until it is experimental.

We can also update our user. It updates row by id provided in user object and sets all other non primary_key fields to values stored in the passed user object. So you can just assign members to user object you want and call update

user.firstName = "Nicholas";
user.imageUrl = "https://cdn1.iconfinder.com/data/icons/man-icon-set/100/man_icon-21-512.png"

Also there is a non-CRUD update version update_all:

storage.update_all(set(c(&User::lastName) = "Hardey",
                       c(&User::typeId) = 2),
                   where(c(&User::firstName) == "Tom"));

And delete. To delete you have to pass id only, not whole object. Also we need to explicitly tell which class of object we want to delete. Function name is remove not delete cause delete is a reserved word in C++.


Also we can extract all objects into std::vector.

auto allUsers = storage.get_all<User>();
cout << "allUsers (" << allUsers.size() << "):" << endl;
for(auto &user : allUsers) {
    cout << storage.dump(user) << endl; //  dump returns std::string with json-like style object info. For example: { id : '1', first_name : 'Jonh', last_name : 'Doe', birth_date : '664416000', image_url : 'https://cdn1.iconfinder.com/data/icons/man-icon-set/100/man_icon-21-512.png', type_id : '3' }

And one can specify return container type explicitly: let's get all users in std::list, not std::vector:

auto allUsersList = storage.get_all<User, std::list<User>>();

Container must be STL compatible (must have push_back(T&&) function in this case).

get_all can be too heavy for memory so you can iterate row by row (i.e. object by object):

for(auto &user : storage.iterate<User>()) {
    cout << storage.dump(user) << endl;

iterate member function returns adapter object that has begin and end member functions returning iterators that fetch object on dereference operator call.

CRUD functions get, get_pointer, remove, update (not insert) work only if your type has a primary key column. If you try to get an object that is mapped to your storage but has no primary key column a std::system_error will be thrown cause sqlite_orm cannot detect an id. If you want to know how to perform a storage without primary key take a look at date_time.cpp example in examples folder.

Prepared statements

Prepared statements are strongly typed.

//  SELECT doctor_id
//  FROM visits
//  WHERE LENGTH(patient_name) > 8
auto selectStatement = storage.prepare(select(&Visit::doctor_id, where(length(&Visit::patient_name) > 8)));
cout << "selectStatement = " << selectStatement.sql() << endl;  //  prints "SELECT doctor_id FROM ..."
auto rows = storage.execute(selectStatement); //  rows is std::vector<decltype(Visit::doctor_id)>

//  SELECT doctor_id
//  FROM visits
//  WHERE LENGTH(patient_name) > 11
get<0>(selectStatement) = 11;
auto rows2 = storage.execute(selectStatement);

get<N>(statement) function call allows you to access fields to bind them to your statement.

Aggregate Functions

//  SELECT AVG(id) FROM users
auto averageId = storage.avg(&User::id);    
cout << "averageId = " << averageId << endl;        //  averageId = 4.5
//  SELECT AVG(birth_date) FROM users
auto averageBirthDate = storage.avg(&User::birthDate);  
cout << "averageBirthDate = " << averageBirthDate << endl;      //  averageBirthDate = 6.64416e+08
//  SELECT COUNT(*) FROM users
auto usersCount = storage.count<User>();    
cout << "users count = " << usersCount << endl;     //  users count = 8

//  SELECT COUNT(id) FROM users
auto countId = storage.count(&User::id);    
cout << "countId = " << countId << endl;        //  countId = 8

//  SELECT COUNT(image_url) FROM users
auto countImageUrl = storage.count(&User::imageUrl);   
cout << "countImageUrl = " << countImageUrl << endl;      //  countImageUrl = 5

auto concatedUserId = storage.group_concat(&User::id);      
cout << "concatedUserId = " << concatedUserId << endl;      //  concatedUserId = 1,2,3,4,5,6,7,8

//  SELECT GROUP_CONCAT(id, "---") FROM users
auto concatedUserIdWithDashes = storage.group_concat(&User::id, "---");     
cout << "concatedUserIdWithDashes = " << concatedUserIdWithDashes << endl;      //  concatedUserIdWithDashes = 1---2---3---4---5---6---7---8

//  SELECT MAX(id) FROM users
if(auto maxId = storage.max(&User::id)){    
    cout << "maxId = " << *maxId <<endl;    //  maxId = 12  (maxId is std::unique_ptr<int>)
    cout << "maxId is null" << endl;
//  SELECT MAX(first_name) FROM users
if(auto maxFirstName = storage.max(&User::firstName)){ 
    cout << "maxFirstName = " << *maxFirstName << endl; //  maxFirstName = Jonh (maxFirstName is std::unique_ptr<std::string>)
    cout << "maxFirstName is null" << endl;

//  SELECT MIN(id) FROM users
if(auto minId = storage.min(&User::id)){    
    cout << "minId = " << *minId << endl;   //  minId = 1 (minId is std::unique_ptr<int>)
    cout << "minId is null" << endl;

//  SELECT MIN(last_name) FROM users
if(auto minLastName = storage.min(&User::lastName)){
    cout << "minLastName = " << *minLastName << endl;   //  minLastName = Doe
    cout << "minLastName is null" << endl;

//  SELECT SUM(id) FROM users
if(auto sumId = storage.sum(&User::id)){    //  sumId is std::unique_ptr<int>
    cout << "sumId = " << *sumId << endl;
    cout << "sumId is null" << endl;

//  SELECT TOTAL(id) FROM users
auto totalId = storage.total(&User::id);
cout << "totalId = " << totalId << endl;    //  totalId is double (always)

Where conditions

You also can select objects with custom where conditions with =, !=, >, >=, <, <=, IN, BETWEEN and LIKE.

For example: let's select users with id lesser than 10:

//  SELECT * FROM users WHERE id < 10
auto idLesserThan10 = storage.get_all<User>(where(c(&User::id) < 10));
cout << "idLesserThan10 count = " << idLesserThan10.size() << endl;
for(auto &user : idLesserThan10) {
    cout << storage.dump(user) << endl;

Or select all users who's first name is not equal "John":

//  SELECT * FROM users WHERE first_name != 'John'
auto notJohn = storage.get_all<User>(where(c(&User::firstName) != "John"));
cout << "notJohn count = " << notJohn.size() << endl;
for(auto &user : notJohn) {
    cout << storage.dump(user) << endl;

By the way one can implement not equal in a different way using C++ negation operator:

auto notJohn2 = storage.get_all<User>(where(not (c(&User::firstName) == "John")));

You can use ! and not in this case cause they are equal. Also you can chain several conditions with and and or operators. Let's try to get users with query with conditions like where id >= 5 and id <= 7 and not id = 6:

auto id5and7 = storage.get_all<User>(where(c(&User::id) <= 7 and c(&User::id) >= 5 and not (c(&User::id) == 6)));
cout << "id5and7 count = " << id5and7.size() << endl;
for(auto &user : id5and7) {
    cout << storage.dump(user) << endl;

Or let's just export two users with id 10 or id 16 (of course if these users exist):

auto id10or16 = storage.get_all<User>(where(c(&User::id) == 10 or c(&User::id) == 16));
cout << "id10or16 count = " << id10or16.size() << endl;
for(auto &user : id10or16) {
    cout << storage.dump(user) << endl;

In fact you can chain together any number of different conditions with any operator from and, or and not. All conditions are templated so there is no runtime overhead. And this makes sqlite_orm the most powerful sqlite C++ ORM library!

Moreover you can use parentheses to set the priority of query conditions:

auto cuteConditions = storage.get_all<User>(where((c(&User::firstName) == "John" or c(&User::firstName) == "Alex") and c(&User::id) == 4));  //  where (first_name = 'John' or first_name = 'Alex') and id = 4
cout << "cuteConditions count = " << cuteConditions.size() << endl; //  cuteConditions count = 1
cuteConditions = storage.get_all<User>(where(c(&User::firstName) == "John" or (c(&User::firstName) == "Alex" and c(&User::id) == 4)));   //  where first_name = 'John' or (first_name = 'Alex' and id = 4)
cout << "cuteConditions count = " << cuteConditions.size() << endl; //  cuteConditions count = 2

Also we can implement get by id with get_all and where like this:

//  SELECT * FROM users WHERE ( 2 = id )
auto idEquals2 = storage.get_all<User>(where(2 == c(&User::id)));
cout << "idEquals2 count = " << idEquals2.size() << endl;
    cout << storage.dump(idEquals2.front()) << endl;
    cout << "user with id 2 doesn't exist" << endl;

Lets try the IN operator:

//  SELECT * FROM users WHERE id IN (2, 4, 6, 8, 10)
auto evenLesserTen10 = storage.get_all<User>(where(in(&User::id, {2, 4, 6, 8, 10})));
cout << "evenLesserTen10 count = " << evenLesserTen10.size() << endl;
for(auto &user : evenLesserTen10) {
    cout << storage.dump(user) << endl;

//  SELECT * FROM users WHERE last_name IN ("Doe", "White")
auto doesAndWhites = storage.get_all<User>(where(in(&User::lastName, {"Doe", "White"})));
cout << "doesAndWhites count = " << doesAndWhites.size() << endl;
for(auto &user : doesAndWhites) {
    cout << storage.dump(user) << endl;


//  SELECT * FROM users WHERE id BETWEEN 66 AND 68
auto betweenId = storage.get_all<User>(where(between(&User::id, 66, 68)));
cout << "betweenId = " << betweenId.size() << endl;
for(auto &user : betweenId) {
    cout << storage.dump(user) << endl;

And even LIKE:

//  SELECT * FROM users WHERE last_name LIKE 'D%'
auto whereNameLike = storage.get_all<User>(where(like(&User::lastName, "D%")));
cout << "whereNameLike = " << whereNameLike.size() << endl;
for(auto &user : whereNameLike) {
    cout << storage.dump(user) << endl;

Looks like magic but it works very simple. Cute function c (column) takes a class member pointer and returns a special expression middle object that can be used with operators overloaded in ::sqlite_orm namespace. Operator overloads act just like functions

  • is_equal
  • is_not_equal
  • greater_than
  • greater_or_equal
  • lesser_than
  • lesser_or_equal
  • is_null
  • is_not_null

that simulate binary comparison operator so they take 2 arguments: left hand side and right hand side. Arguments may be either member pointer of mapped class or any other expression (core/aggregate function, literal or subexpression). Binary comparison functions map arguments to text to be passed to sqlite engine to process query. Member pointers are being mapped to column names and literals/variables/constants to '?' and then are bound automatically. Next where function places brackets around condition and adds "WHERE" keyword before condition text. Next resulted string appends to a query string and is being processed further.

If you omit where function in get_all it will return all objects from a table:

auto allUsers = storage.get_all<User>();

Also you can use remove_all function to perform DELETE FROM ... WHERE query with the same type of conditions.

storage.remove_all<User>(where(c(&User::id) < 100));

Raw select

If you need to extract only a single column (SELECT %column_name% FROM %table_name% WHERE %conditions%) you can use a non-CRUD select function:

//  SELECT id FROM users
auto allIds = storage.select(&User::id);    
cout << "allIds count = " << allIds.size() << endl; //  allIds is std::vector<int>
for(auto &id : allIds) {
    cout << id << " ";
cout << endl;

//  SELECT id FROM users WHERE last_name = 'Doe'
auto doeIds = storage.select(&User::id, where(c(&User::lastName) == "Doe"));
cout << "doeIds count = " << doeIds.size() << endl; //  doeIds is std::vector<int>
for(auto &doeId : doeIds) {
    cout << doeId << " ";
cout << endl;

//  SELECT last_name FROM users WHERE id < 300
auto allLastNames = storage.select(&User::lastName, where(c(&User::id) < 300));    
cout << "allLastNames count = " << allLastNames.size() << endl; //  allLastNames is std::vector<std::string>
for(auto &lastName : allLastNames) {
    cout << lastName << " ";
cout << endl;

//  SELECT id FROM users WHERE image_url IS NULL
auto idsWithoutUrls = storage.select(&User::id, where(is_null(&User::imageUrl)));
for(auto id : idsWithoutUrls) {
    cout << "id without image url " << id << endl;

//  SELECT id FROM users WHERE image_url IS NOT NULL
auto idsWithUrl = storage.select(&User::id, where(is_not_null(&User::imageUrl)));
for(auto id : idsWithUrl) {
    cout << "id with image url " << id << endl;
auto idsWithUrl2 = storage.select(&User::id, where(not is_null(&User::imageUrl)));

Also you're able to select several column in a vector of tuples. Example:

//  `SELECT first_name, last_name FROM users WHERE id > 250 ORDER BY id`
auto partialSelect = storage.select(columns(&User::firstName, &User::lastName),
                                    where(c(&User::id) > 250),
cout << "partialSelect count = " << partialSelect.size() << endl;
for(auto &t : partialSelect) {
    auto &firstName = std::get<0>(t);
    auto &lastName = std::get<1>(t);
    cout << firstName << " " << lastName << endl;

ORDER BY support

ORDER BY query option can be applied to get_all and select functions just like where but with order_by function. It can be mixed with WHERE in a single query. Examples:

//  `SELECT * FROM users ORDER BY id`
auto orderedUsers = storage.get_all<User>(order_by(&User::id));
cout << "orderedUsers count = " << orderedUsers.size() << endl;
for(auto &user : orderedUsers) {
    cout << storage.dump(user) << endl;

//  `SELECT * FROM users WHERE id < 250 ORDER BY first_name`
auto orderedUsers2 = storage.get_all<User>(where(c(&User::id) < 250), order_by(&User::firstName));
cout << "orderedUsers2 count = " << orderedUsers2.size() << endl;
for(auto &user : orderedUsers2) {
    cout << storage.dump(user) << endl;

//  `SELECT * FROM users WHERE id > 100 ORDER BY first_name ASC`
auto orderedUsers3 = storage.get_all<User>(where(c(&User::id) > 100), order_by(&User::firstName).asc());
cout << "orderedUsers3 count = " << orderedUsers3.size() << endl;
for(auto &user : orderedUsers3) {
    cout << storage.dump(user) << endl;

//  `SELECT * FROM users ORDER BY id DESC`
auto orderedUsers4 = storage.get_all<User>(order_by(&User::id).desc());
cout << "orderedUsers4 count = " << orderedUsers4.size() << endl;
for(auto &user : orderedUsers4) {
    cout << storage.dump(user) << endl;

//  `SELECT first_name FROM users ORDER BY ID DESC`
auto orderedFirstNames = storage.select(&User::firstName, order_by(&User::id).desc());
cout << "orderedFirstNames count = " << orderedFirstNames.size() << endl;
for(auto &firstName : orderedFirstNames) {
    cout << "firstName = " << firstName << endl;


There are three available versions of LIMIT/OFFSET options:

  • LIMIT %limit%
  • LIMIT %limit% OFFSET %offset%
  • LIMIT %offset%, %limit%

All these versions available with the same interface:

//  `SELECT * FROM users WHERE id > 250 ORDER BY id LIMIT 5`
auto limited5 = storage.get_all<User>(where(c(&User::id) > 250),
cout << "limited5 count = " << limited5.size() << endl;
for(auto &user : limited5) {
    cout << storage.dump(user) << endl;

//  `SELECT * FROM users WHERE id > 250 ORDER BY id LIMIT 5, 10`
auto limited5comma10 = storage.get_all<User>(where(c(&User::id) > 250),
                                             limit(5, 10));
cout << "limited5comma10 count = " << limited5comma10.size() << endl;
for(auto &user : limited5comma10) {
    cout << storage.dump(user) << endl;

//  `SELECT * FROM users WHERE id > 250 ORDER BY id LIMIT 5 OFFSET 10`
auto limit5offset10 = storage.get_all<User>(where(c(&User::id) > 250),
                                            limit(5, offset(10)));
cout << "limit5offset10 count = " << limit5offset10.size() << endl;
for(auto &user : limit5offset10) {
    cout << storage.dump(user) << endl;

Please beware that queries LIMIT 5, 10 and LIMIT 5 OFFSET 10 mean different. LIMIT 5, 10 means LIMIT 10 OFFSET 5.

JOIN support

You can perform simple JOIN, CROSS JOIN, INNER JOIN, LEFT JOIN or LEFT OUTER JOIN in your query. Instead of joined table specify mapped type. Example for doctors and visits:

//  SELECT a.doctor_id, a.doctor_name,
//      c.patient_name, c.vdate
//  FROM doctors a
//  LEFT JOIN visits c
//  ON a.doctor_id=c.doctor_id;
auto rows = storage2.select(columns(&Doctor::id, &Doctor::name, &Visit::patientName, &Visit::vdate),
                            left_join<Visit>(on(c(&Doctor::id) == &Visit::doctorId)));  //  one `c` call is enough cause operator overloads are templated
for(auto &row : rows) {
    cout << std::get<0>(row) << '\t' << std::get<1>(row) << '\t' << std::get<2>(row) << '\t' << std::get<3>(row) << endl;
cout << endl;

Simple JOIN:

//  SELECT a.doctor_id,a.doctor_name,
//      c.patient_name,c.vdate
//  FROM doctors a
//  JOIN visits c
//  ON a.doctor_id=c.doctor_id;
rows = storage2.select(columns(&Doctor::id, &Doctor::name, &Visit::patientName, &Visit::vdate),
                       join<Visit>(on(c(&Doctor::id) == &Visit::doctorId)));
for(auto &row : rows) {
    cout << std::get<0>(row) << '\t' << std::get<1>(row) << '\t' << std::get<2>(row) << '\t' << std::get<3>(row) << endl;
cout << endl;

Two INNER JOINs in one query:

//      trackid,
//      tracks.name AS Track,
//      albums.title AS Album,
//      artists.name AS Artist
//  FROM
//      tracks
//  INNER JOIN albums ON albums.albumid = tracks.albumid
//  INNER JOIN artists ON artists.artistid = albums.artistid;
auto innerJoinRows2 = storage.select(columns(&Track::trackId, &Track::name, &Album::title, &Artist::name),
                                     inner_join<Album>(on(c(&Album::albumId) == &Track::albumId)),
                                     inner_join<Artist>(on(c(&Artist::artistId) == &Album::artistId)));
//  innerJoinRows2 is std::vector<std::tuple<decltype(Track::trackId), decltype(Track::name), decltype(Album::title), decltype(Artist::name)>>

More join examples can be found in examples folder.

Migrations functionality

There are no explicit up and down functions that are used to be used in migrations. Instead sqlite_orm offers sync_schema function that takes responsibility of comparing actual db file schema with one you specified in make_storage call and if something is not equal it alters or drops/creates schema.

//  or

Please beware that sync_schema doesn't guarantee that data will be saved. It tries to save it only. Below you can see rules list that sync_schema follows during call:

  • if there are excess tables exist in db they are ignored (not dropped)
  • every table from storage is compared with it's db analog and
    • if table doesn't exist it is created
    • if table exists its colums are being compared with table_info from db and
      • if there are columns in db that do not exist in storage (excess) table will be dropped and recreated if preserve is false, and table will be copied into temporary table without excess columns, source table will be dropped, copied table will be renamed to source table (sqlite remove column technique) if preserve is true. preserve is the first argument in sync_schema function. It's default value is false. Beware that setting it to true may take time for copying table rows.
      • if there are columns in storage that do not exist in db they will be added using 'ALTER TABLE ... ADD COLUMN ...' command and table data will not be dropped but if any of added columns is null but has not default value table will be dropped and recreated
      • if there is any column existing in both db and storage but differs by any of properties (type, pk, notnull) table will be dropped and recreated (dflt_value isn't checked cause there can be ambiguity in default values, please beware).

The best practice is to call this function right after storage creation.


There are three ways to begin and commit/rollback transactions:

  • explicitly call begin_transaction();, rollback(); or commit(); functions
  • use transaction function which begins transaction implicitly and takes a lambda argument which returns true for commit and false for rollback. All storage calls performed in lambda can be commited or rollbacked by returning true or false.
  • use transaction_guard function which returns a guard object which works just like lock_guard for std::mutex.

Example for explicit call:

auto secondUser = storage.get<User>(2);

secondUser.typeId = 3;
storage.rollback(); //  or storage.commit();

secondUser = storage.get<decltype(secondUser)>(secondUser.id);
assert(secondUser.typeId != 3);

Example for implicit call:

storage.transaction([&] () mutable {    //  mutable keyword allows make non-const function calls
    auto secondUser = storage.get<User>(2);
    secondUser.typeId = 1;
    auto gottaRollback = bool(rand() % 2);
    if(gottaRollback){  //  dummy condition for test
        return false;   //  exits lambda and calls ROLLBACK
    return true;        //  exits lambda and calls COMMIT

The second way guarantees that commit or rollback will be called. You can use either way.

Trancations are useful with changes sqlite function that returns number of rows modified.

storage.transaction([&] () mutable {
    storage.remove_all<User>(where(c(&User::id) < 100));
    auto usersRemoved = storage.changes();
    cout << "usersRemoved = " << usersRemoved << endl;
    return true;

It will print a number of deleted users (rows). But if you call changes without a transaction and your database is located in file not in RAM the result will be 0 always cause sqlite_orm opens and closes connection every time you call a function without a transaction.

Also a transaction function returns true if transaction is commited and false if it is rollbacked. It can be useful if your next actions depend on transaction result:

auto commited = storage.transaction([&] () mutable {    
    auto secondUser = storage.get<User>(2);
    secondUser.typeId = 1;
    auto gottaRollback = bool(rand() % 2);
    if(gottaRollback){  //  dummy condition for test
        return false;   //  exits lambda and calls ROLLBACK
    return true;        //  exits lambda and calls COMMIT
    cout << "Commited successfully, go on." << endl;
    cerr << "Commit failed, process an error" << endl;

Example for transaction_guard function:

  auto guard = storage.transaction_guard(); //  calls BEGIN TRANSACTION and returns guard object
  user.name = "Paul";
  auto notExisting = storage.get<User>(-1); //  exception is thrown here, guard calls ROLLBACK in its destructor
  cerr << "exception" << endl;

In memory database

To manage in memory database just provide :memory: or "" instead as filename to make_storage.

Comparison with other C++ libs

sqlite_orm SQLiteCpp hiberlite ODB
Schema sync yes no yes no
Single responsibility principle yes yes no no
STL compatible yes no no no
No raw string queries yes no yes yes
Transactions yes yes no yes
Custom types binding yes no yes yes
Doesn't use macros and/or external codegen scripts yes yes no no
Aggregate functions yes yes no yes
Prepared statements yes yes no no


To work well your data model class must be default constructable and must not have const fields mapped to database cause they are assigned during queries. Otherwise code won't compile on line with member assignment operator.

For more details please check the project wiki.


Note: Installation is not necessary if you plan to use the fetchContent method, see below in Usage.

Use a popular package manager like vcpkg and just install it with the vcpkg install sqlite-orm command.

Or you build it from source:

git clone https://github.com/fnc12/sqlite_orm.git sqlite_orm
cd sqlite_orm
cmake -B build
cmake --build build --target install

You might need admin rights for the last command.



If you use cmake, there are two supported ways how to use it with cmake (if another works as well or should be supported, open an issue).

Either way you choose, the include path as well as the dependency sqlite3 will be set automatically on your target. So usage is straight forward, but you need to have installed sqlite3 on your system (see Requirements below)

Find Package

If you have installed the lib system wide and it's in your PATH, you can use find_package to include it in cmake. It will make a target sqlite_orm::sqlite_orm available which you can link against. Have a look at examples/find_package for a full example.

find_package(SqliteOrm REQUIRED)

target_link_libraries(main PRIVATE sqlite_orm::sqlite_orm)

Fetch Content (Recommended)

Alternatively, cmake can download the project directly from github during configure stage and therefore you don't need to install the lib before. Againt a target sqlite_orm::sqlite_orm will be available which you can link against. Have a look at examples/fetch_content for a full example.

No CMake

If you want to use the lib directly with Make or something else, just set the inlcude path correctly (should be correct on Linux already), so sqlite_orm/sqlite_orm.h is found. As this is a header only lib, there is nothing more you have to do.


  • C++14 compatible compiler (not C++11 cause of templated lambdas in the lib).
  • Sqlite3 installed on your system and in the path, so cmake can find it (or linked to you project if you don't use cmake)

Video from conference

Video from conference


In case you need a native SQLite client for macOS or Windows 10 you can use SqliteMan https://sqliteman.dev. It is not a commercial. It is a free native client being developed by the maintainer of this repo.

Yevgeniy Zakharov
Mobile developer. Have experience in: C++, Objective-C, Swift, C#, Java. Frameworks: cocos2d-x, cocoa touch, cocoa, .NET, Android SDK/NDK, gtkmm
Yevgeniy Zakharov
  • 268: Add remove overload for whole object. (fixes #268)

    268: Add remove overload for whole object. (fixes #268)


    I add remove overload for accept whole object, I think it is very good for general repository pattern, that does not know which member variable is key for the entity.

    this PR resolved #268

  • How to check dependent tables before attempting to delete a parent record?

    How to check dependent tables before attempting to delete a parent record?

    I have a table Bank and a table City. Bank has a foreign key into City. I want to check if a certain City has dependent Banks before I attempt to remove it from the DB. I can do this at a low level like this:

    auto count = storage.count<Bank>(where(is_equal(&Bank::fkey_city, city_primaryKey)));

    There is so much type information in sqlite_orm that I am sure that this can be done at a higher level. I would like to create a class Dependent for each table that is dependent on a Parent table and define the SQL in a generic way, something like:

    template<typename DependentTable, typename ForeignKeyColumn>
    class Dependent
         bool link_exists( int primaryKey)
         { //...

    Is this possible?

    I look for an elegant solution!!

    Regards, Juan

  • Allow deletion with a set of composite keys

    Allow deletion with a set of composite keys

    I'm currently having an issue where I have something like:

    typedef struct {
        std::string serial_number;
        std::string device_id;
    } Device;

    Would there be a way for me to create a query similar to DELETE FROM devices WHERE (serial_number, device_id) IN (VALUES ('abc', '123'), ('def', '456'))?

  • How to write a select within a select in sqlite_orm?

    How to write a select within a select in sqlite_orm?

    I have this SQL statement:

    select c.id_claim, (
        SELECT count(*) > 0 
        from Invoices ii 
        WHERE ii.fkey_claim = c.id_claim and ii.fkey_INSResponse = 1
    ), i.fkey_INSResponse = 1, i.number 
    from Invoices i 
    INNER JOIN Claims c on i.fkey_claim = c.id_claim

    and want to write it in sqlite_orm like so:

    auto lines = storage.select(columns(alias_column<als_c>(&Claim::id), select(columns(alias_column<als_s>(&Invoice::id), count()), where(c(alias_column<als_s>(&Invoice::fkey_claim)) == alias_column<als_m>(&Claim::id))),
    		inner_join<als_c>(on(c(alias_column<als_i>(&Invoice::fkey_claim)) == alias_column<als_c>(&Claim::id)))));

    But throws error on compilation:

    error C2027: use of undefined type 'sqlite_orm::internal::column_result_t<St,sqlite_orm::internal::inner_join_t<als_c,sqlite_orm::internal::on_t<sqlite_orm::internal::is_equal_t<sqlite_orm::internal::alias_column_t<als_i,int Invoice::* >,sqlite_orm::internal::alias_column_t<als_c,int Claim::* >>>>,void>'

    what am I doing wrong?

  • How can I produce NULL in a column?

    How can I produce NULL in a column?

    I have this:

    auto statement = storage.prepare(select(union_all(
    			select(columns(quote("--------------------"), 0)),
    			select(columns(as<NamesAlias>(&Employee::m_ename), &Employee::m_depno)))));

    I want to produce a NULL value where I currently have a cero (0)... I tried nullptr and std::nullopt to no avail.

    there must be a way to produce a NULL value!

    This is part of a larger union_all where I want the dashes to separate 2 selects but I don't want a 0 in the second column - I need a numeric value or a NULL so it matches the second select...

    See my point?

  • Exception in the destructor crashes the application

    Exception in the destructor crashes the application

    terminate called after throwing an instance of 'std::system_error'
      what():  unable to close due to unfinalized statements or unfinished backups: database is locked
    (gdb) bt full
    #0  0x00007fd5920e17ff in raise () from /lib64/libc.so.6
    No symbol table info available.
    #1  0x00007fd5920cbc35 in abort () from /lib64/libc.so.6
    No symbol table info available.
    #2  0x00007fd53b90c09b in __gnu_cxx::__verbose_terminate_handler() [clone .cold.1] () from /lib64/libstdc++.so.6
    No symbol table info available.
    #3  0x00007fd53b91253c in __cxxabiv1::__terminate(void (*)()) () from /lib64/libstdc++.so.6
    No symbol table info available.
    #4  0x00007fd53b911559 in __cxa_call_terminate () from /lib64/libstdc++.so.6
    No symbol table info available.
    #5  0x00007fd53b911ed8 in __gxx_personality_v0 () from /lib64/libstdc++.so.6
    No symbol table info available.
    #6  0x00007fd53b674b13 in _Unwind_RaiseException_Phase2 () from /lib64/libgcc_s.so.1
    No symbol table info available.
    #7  0x00007fd53b675081 in _Unwind_RaiseException () from /lib64/libgcc_s.so.1
    No symbol table info available.
    #8  0x00007fd53b9127eb in __cxa_throw () from /lib64/libstdc++.so.6
    No symbol table info available.
    #9  0x00007fd53ccf8875 in sqlite_orm::internal::connection_holder::release (this=0x104fb90) at /usr/include/c++/8/system_error:151
            rc = 5
    #10 0x00007fd53cda5841 in sqlite_orm::internal::connection_ref::~connection_ref (this=0x7fd4c47f6648, __in_chrg=<optimized out>)
        at .../sqlite_orm/sqlite_orm.h:6842
    No locals.
    #11 sqlite_orm::internal::prepared_statement_base::~prepared_statement_base ([email protected]=0x7fd4c47f6640, __in_chrg=<optimized out>)
        at .../sqlite_orm/sqlite_orm.h:6865
    No locals.
    #12 0x00007fd53ce3fa6b in sqlite_orm::internal::prepared_statement_t<sqlite_orm::internal::get_all_t<zroute::ElementModel> >::~prepared_statement_t (this=0x7fd4c47f6640, __in_chrg=<optimized out>)
        at .../sqlite_orm/sqlite_orm.h:6915
    No locals.
    #13 sqlite_orm::internal::storage_t<sqlite_orm::internal::table_t<...> (this=0x1040a70) at .../sqlite_orm/sqlite_orm.h:10486
            statement = {<sqlite_orm::internal::prepared_statement_base> = {stmt = 0x0, con = {holder = @0x104fb90}}, t = {conditions = empty std::tuple}}
            statement = <optimized out>
    #14 ... more custom app logic to follow ...

    I'm using sqlite_orm v1.5 in a multi-threaded environment. When doing some load testing application crashes due to exception being thrown inside a destructor as can be seen from the backtrace above.

    Is there anything that can be done to prevent the application from crashing in this case?

  • More complex query example

    More complex query example

    Hey, sorry to keep posting here.. Is there an example somewhere of how you'd do a complex query such as:

    SELECT b.*
    FROM tagmap bt, bookmark b, tag t
    WHERE bt.tag_id = t.tag_id
    AND (t.name IN ('bookmark', 'webservice', 'semweb'))
    AND b.id = bt.bookmark_id
    GROUP BY b.id
    HAVING COUNT( b.id )=3

    I'm attempting to implement a toxi structure similar to the one posted here:


  • User defined function possible in generated_always_as column?

    User defined function possible in generated_always_as column?

    I don't think so, but just in case here it is:

    the function:

    using namespace std::chrono;
    struct Age {
        int operator()(sys_days birth) const {
            auto diff = Today() - birth;
            return  duration_cast<years>(diff).count();
        static const char* name() {
            return "AGE";

    and the make_storage() that won't compile:

        static auto storage = make_storage(dbFilePath,
            make_unique_index("name_unique.idx", &User::name ),
                make_column("id", &User::id, primary_key()),
                make_column("name", &User::name),
                make_column("born", &User::born),
                make_column("job", &User::job),
                make_column("blob", &User::blob),
                make_column("age", &User::age, generated_always_as(func<Age>(&User::born))),
                check(length(&User::name) > 2),
                check(c(&User::born) != 0),
                make_column("id", &Job::id, primary_key(), autoincrement()),
                make_column("name", &Job::name, unique()),
                make_column("base_salary", &Job::base_salary)),
                make_column("name", &UserView::name)));

    I get error:

    1>C:\Components\klaus\include\sqlite_orm\sqlite_orm.h(14071,1): error C2664: 'std::chrono::sys_days sqlite_orm::row_extractor<std::chrono::sys_days,void>::extract(const char *)': cannot convert argument 1 from 'sqlite3_value *' to 'const char *'

  • provide

    provide "user define function"

    Hi! Could you provide "user define function" function? Refer to the link: http://sqlite.org/c3ref/create_function.html and http://sqlite.org/c3ref/create_collation.html This is usually very helpful for complex comparisons, sorting, etc. /:)

  • Building a large storage consumes lots of memory

    Building a large storage consumes lots of memory

    I'm running into an issue where the build consumes almost all the memory on my device (16GB RAM). I have two storages in the same cpp file. Each storage has ~5 tables, and each table has ~6 columns. The issue arises when I compile with -Ofast.

    Have you had this issue before?

  • Send a raw sqlite query

    Send a raw sqlite query

    We are transitioning a large chunk of code from using sqlite3 directly to using this ORM. While most of the transition has been easy-ish, we keep hitting a wall with dynamic multi-column sorts.

    In the past, we dynamically generate the sqlite3 query string by evaluating N pairs of column name and sort order. multi_order_by does not work for us in this case, as we have dozens of combinations possible per table.

    Is there a way to gain access to the underlying sqlite3 connection so we can invoke sqlite3_exec directly?

  • Compile error: catch2 too old

    Compile error: catch2 too old

    ERROR: In file included from /home/autumn/Downloads/sqlite_orm-1.8/tests/tests.cpp:5: /home/autumn/Downloads/sqlite_orm-1.8/build/_deps/catch2-src/single_include/catch2/catch.hpp:10877:45: ошибка: размер массива «altStackMem» не является целочисленным константным выражением 10877 | char FatalConditionHandler::altStackMem[sigStackSize] = {}; | ^~~~~~~~~~~~ gmake[2]: *** [tests/CMakeFiles/unit_tests.dir/build.make:494: tests/CMakeFiles/unit_tests.dir/tests.cpp.o] Ошибка 1 gmake[2]: выход из каталога «/home/autumn/Downloads/sqlite_orm-1.8/build» gmake[1]: *** [CMakeFiles/Makefile2:941: tests/CMakeFiles/unit_tests.dir/all] Ошибка 2 gmake[1]: выход из каталога «/home/autumn/Downloads/sqlite_orm-1.8/build» gmake: *** [Makefile:149: all] Ошибка 2



    `catch2 GIT_REPOSITORY https://github.com/catchorg/Catch2.git

    •    GIT_TAG v2.13.2
    •   GIT_TAG v2.13.5

    Please fix this problem

  • Compile errors: sqlite_orm_VERSION

    Compile errors: sqlite_orm_VERSION "1.8.0", use not_single_header_include

    When I choose use not_single_header_include, I got many errors, please help me: /usr/local/lihuili/pl2117/src/libdatasync/../../sysroot/../prebuilts/gcc/linux-x86/arm/gcc-arm-8.3-2019.03-x86_64-arm-linux-gnueabihf/bin/arm-linux-gnueabihf-g++ --sysroot=/usr/local/lihuili/pl2117/src/libdatasync/../../sysroot -DQT_CORE_LIB -DQT_DBUS_LIB -DQT_GUI_LIB -DQT_NO_DEBUG -DQT_WIDGETS_LIB -D_TARGET_DEVICE -I/usr/local/lihuili/pl2117/build/libdatasync -I/usr/local/lihuili/pl2117/src/libdatasync -I/usr/local/lihuili/pl2117/build/libdatasync/datasync_autogen/include -I/usr/local/lihuili/pl2117/src/libdatasync/../include -I/usr/local/lihuili/pl2117/src/libdatasync/sqlite_orm -isystem /usr/local/lihuili/pl2117/sysroot/usr/include/qt5 -isystem /usr/local/lihuili/pl2117/sysroot/usr/include/qt5/QtWidgets -isystem /usr/local/lihuili/pl2117/sysroot/usr/include/qt5/QtGui -isystem /usr/local/lihuili/pl2117/sysroot/usr/include/qt5/QtCore -isystem /usr/local/lihuili/pl2117/sysroot/usr/../qt/mkspecs/devices/linux-buildroot-g++ -isystem /usr/local/lihuili/pl2117/sysroot/usr/include/qt5/QtDBus -O3 -DNDEBUG -Wno-deprecated-declarations -Wno-unused-result -O3 -Wno-psabi -fPIC -std=gnu++17 -O0 -MD -MT CMakeFiles/datasync.dir/DataBaseUtil_O0.cpp.o -MF CMakeFiles/datasync.dir/DataBaseUtil_O0.cpp.o.d -o CMakeFiles/datasync.dir/DataBaseUtil_O0.cpp.o -c /usr/local/lihuili/pl2117/src/libdatasync/DataBaseUtil_O0.cpp In file included from /usr/local/lihuili/pl2117/src/libdatasync/sqlite_orm/./ast_iterator.h:12, from /usr/local/lihuili/pl2117/src/libdatasync/sqlite_orm/./view.h:11, from /usr/local/lihuili/pl2117/src/libdatasync/sqlite_orm/./storage.h:43, from /usr/local/lihuili/pl2117/src/libdatasync/sqlite_orm/sqlite_orm.h:33, from /usr/local/lihuili/pl2117/src/libdatasync/DataBaseUtil.h:8, from /usr/local/lihuili/pl2117/src/libdatasync/DataBaseUtil.cpp:15: /usr/local/lihuili/pl2117/src/libdatasync/sqlite_orm/./prepared_statement.h:25:13: error: ‘connection_ref’ does not name a type connection_ref con; ^~~~~~~~~~~~~~ /usr/local/lihuili/pl2117/src/libdatasync/sqlite_orm/./prepared_statement.h:79:70: error: ‘connection_ref’ has not been declared prepared_statement_t(T expression_, sqlite3_stmt* stmt_, connection_ref con_) : ^~~~~~~~~~~~~~ /usr/local/lihuili/pl2117/src/libdatasync/sqlite_orm/./prepared_statement.h:135:29: error: ‘set_t’ was not declared in this scope struct update_all_t<set_t<Args...>, Wargs...> { ^~~~~

  • [Question/Suggestion] Throw Error If Data Will Be Deleted

    [Question/Suggestion] Throw Error If Data Will Be Deleted

    Hey -- revisiting this library after a long time and continuing to research it for a project.

    I noticed as I'm working on a local db, if I change a field, the database can have its data ruthlessly dropped which is quite scary.

    Is there a way to have sync_schema tell me if I've coded things in such a way it will drop data when updating the local DB? Perhaps like:

    sync_schema(preserve, throw_error_on_deletion)

    I think if I say preserve is true, sqlite_orm should never delete information, opting to throw an error instead of deleting data. This gives the developer to fix their instructions, perhaps a default value is needed etc, before creating an irreversible action.

    Also -- my feedback would be to pick a sensible default for the user if none is provided, instead of dropping an entire table

  • "Fetch Content" doesn't work because of catch2-src

    I tried to open "fetch_content" (opened CMakeLists.txt from "fetch_content") and cmake configuration failed because it cannot fetch "catch2-src":

    fatal: No url found for submodule path 'tests/_deps/catch2-src' in .gitmodules
    CMake Error at sqliteorm-subbuild/sqliteorm-populate-prefix/tmp/sqliteorm-populate-gitclone.cmake:62 (message):
      Failed to update submodules in:

    cmake 3.25.1 g++/gcc 11.3.0

  • Is it possible to write 2 or more asterisks in a select?

    Is it possible to write 2 or more asterisks in a select?

    // SELECT artists.*, albums.* FROM artists JOIN albums ON albums.artist_id = artist.id
    auto expression = select(columns(asterisk<Artist>(), asterisk<Album>()), join<Album>(on(c(&Album::m_artist_id) == &Artist::m_id)));
    auto sql = storage.dump(expression);

    This does not compile!

  • How to insert elements into table with foreign key

    How to insert elements into table with foreign key

    I have a class like this:

    class LikedGenre
    	std::unique_ptr<int> m_userID;
    	std::string m_genre;
    	LikedGenre() = default;
    	LikedGenre(std::unique_ptr<int> userId, std::string genre);
    	~LikedGenre() = default;
    	const std::unique_ptr<int>& GetUserID() const;
    	std::string GetGenre() const;
    	void SetUserID(std::unique_ptr<int> userID);
    	void SetGenre(std::string genre);

    and the corresponding table:

    			make_column("userId", &LikedGenre::GetUserID, &LikedGenre::SetUserID, primary_key()),
    			make_column("genres", &LikedGenre::GetGenre, &LikedGenre::SetGenre),

    My question is, how do I do something like this:

    LikedGenre lg(std::move(userIdPtr), genreName);

    How do I link the UserId to the foreign key from LikedGenre table and insert into said table? Can I do this with templates?

DB Browser for SQLite (DB4S) is a high quality, visual, open source tool to create, design, and edit database files compatible with SQLite.
DB Browser for SQLite (DB4S) is a high quality, visual, open source tool to create, design, and edit database files compatible with SQLite.

DB Browser for SQLite What it is DB Browser for SQLite (DB4S) is a high quality, visual, open source tool to create, design, and edit database files c

Jan 2, 2023
React-native-quick-sqlite - ⚡️ The fastest SQLite implementation for react-native.
React-native-quick-sqlite - ⚡️ The fastest SQLite implementation for react-native.

React Native Quick SQLite The **fastest** SQLite implementation for react-native. Copy typeORM patch-package from example dir npm i react-nati

Dec 30, 2022
A project to create a simple ORM.

cpp-ORM Current build status : An ORM project. You can simply create persistent objects using databases. The object representation: Each object have t

Dec 14, 2020
A friendly and lightweight C++ database library for MySQL, PostgreSQL, SQLite and ODBC.

QTL QTL is a C ++ library for accessing SQL databases and currently supports MySQL, SQLite, PostgreSQL and ODBC. QTL is a lightweight library that con

Dec 12, 2022
The C++14 wrapper around sqlite library

sqlite modern cpp wrapper This library is a lightweight modern wrapper around sqlite C api . #include<iostream> #include <sqlite_modern_cpp.h> using n

Dec 29, 2022
SQLean: all the missing SQLite functions

SQLite has very few functions compared to other DBMS. SQLite authors see this as a feature rather than a bug, because SQLite has extension mechanism in place.

Jan 8, 2023
An SQLite binding for node.js with built-in encryption, focused on simplicity and (async) performance

Description An SQLite (more accurately SQLite3MultipleCiphers) binding for node.js focused on simplicity and (async) performance. When dealing with en

May 15, 2022
Yet another SQLite wrapper for Nim

Yet another SQLite wrapper for Nim Features: Design for ARC/ORC, you don’t need to close the connection manually Use importdb macro to create helper f

Jan 4, 2023
Fork of sqlite4java with updated SQLite and very basic compiler hardening enabled.

Download latest version: sqlite4java-392 with SQLite 3.8.7, Windows/Linux/Mac OS X/Android binaries OSGi bundle 1.0.392 with sqlite4java-392 Files for

Oct 26, 2022
An updated fork of sqlite_protobuf, a SQLite extension for extracting values from serialized Protobuf messages.

This fork of sqlite_protobuf fixes some issues (e.g., #15) and removes the test suite that we do not use. It also comes with proto_table, a C library

Oct 19, 2022
Serverless SQLite database read from and write to Object Storage Service, run on FaaS platform.

serverless-sqlite Serverless SQLite database read from and write to Object Storage Service, run on FaaS platform. NOTES: This repository is still in t

May 12, 2022
Verneuil is a VFS extension for SQLite that asynchronously replicates databases to S3-compatible blob stores.
Verneuil is a VFS extension for SQLite that asynchronously replicates databases to S3-compatible blob stores.

Verneuil: streaming replication for sqlite Verneuil1 [vɛʁnœj] is a VFS (OS abstraction layer) for sqlite that accesses local database files like the d

Dec 21, 2022
Unofficial git mirror of SQLite sources (see link for build instructions)

SQLite Source Repository This repository contains the complete source code for the SQLite database engine. Some test scripts are also included. Howeve

Dec 25, 2022
A hook for Project Zomboid that intercepts files access for savegames and puts them in an SQLite DB instead.

ZomboidDB This project consists of a library and patcher that results in file calls for your savegame(s) being transparently intercepted and redirecte

Aug 27, 2022
Lightweight C++ wrapper for SQLite

NLDatabase Lightweight C++ wrapper for SQLite. Requirements C++11 compiler SQLite 3 Usage Let's open a database file and read some rows: #include "NLD

Sep 20, 2019
Writing a sqlite clone from scratch in C++

如何用C++实现一个简易数据库 基于cstack/db_tutorial C语言版本 KCNyu 2022/2/2 作为笔者写的第一个系列型教程,还是选择基于前人的教程经验以及添加一些自己个人的探索。也许有很多纰漏之处,希望大家指正。 1. 数据库是什么? 数据库是“按照数据结构来组织、存储和管理数

Dec 27, 2022
A lightweight header-only C++11 library for quick and easy SQL querying with QtSql classes.

EasyQtSql EasyQtSql is a lightweight header-only C++11 library for quick and easy SQL querying with QtSql classes. Features: Header only C++11 library

Dec 30, 2022
redis-cpp is a header-only library in C++17 for Redis (and C++11 backport)

redis-cpp - lightweight C++ client library for Redis redis-cpp is a C++17 library for executing Redis commands with support for pipelines and the publ

Dec 11, 2022
An Ultra Light DataBase Project

An Ultra Light DataBase Project

Nov 28, 2022