Colibri core is an NLP tool as well as a C++ and Python library for working with basic linguistic constructions such as n-grams and skipgrams (i.e patterns with one or more gaps, either of fixed or dynamic size) in a quick and memory-efficient way. At the core is the tool ``colibri-patternmodeller`` whi ch allows you to build, view, manipulate and query pattern models.

Colibri Core

https://travis-ci.org/proycon/colibri-core.svg?branch=master http://applejack.science.ru.nl/lamabadge.php/colibri-core

GitHub release (latest by date)

Project Status: Active – The project has reached a stable, usable state and is being actively developed.

by Maarten van Gompel, [email protected], Radboud University Nijmegen

Licensed under GPLv3 (See http://www.gnu.org/licenses/gpl-3.0.html)

Colibri Core is software to quickly and efficiently count and extract patterns from large corpus data, to extract various statistics on the extracted patterns, and to compute relations between the extracted patterns. The employed notion of pattern or construction encompasses the following categories:

  • n-gram -- n consecutive words
  • skipgram -- An abstract pattern of predetermined length with one or multiple gaps (of specific size).
  • flexgram -- An abstract pattern with one or more gaps of variable-size.

N-gram extraction may seem fairly trivial at first, with a few lines in your favourite scripting language, you can move a simple sliding window of size n over your corpus and store the results in some kind of hashmap. This trivial approach however makes an unnecessarily high demand on memory resources, this often becomes prohibitive if unleashed on large corpora. Colibri Core tries to minimise these space requirements in several ways:

  • Compressed binary representation -- Each word type is assigned a numeric class, which is encoded in a compact binary format in which highly frequent classes take less space than less frequent classes. Colibri core always uses this representation rather than a full string representation, both on disk and in memory.
  • Informed iterative counting -- Counting is performed more intelligently by iteratively processing the corpus in several passes and quickly discarding patterns that won't reach the desired occurrence threshold.

Skipgram and flexgram extraction are computationally more demanding but have been implemented with similar optimisations. Skipgrams are computed by abstracting over n-grams, and flexgrams in turn are computed either by abstracting over skipgrams, or directly from n-grams on the basis of co-occurrence information (mutual pointwise information).

At the heart of the sofware is the notion of pattern models. The core tool, to be used from the command-line, is colibri-patternmodeller which enables you to build pattern models, generate statistical reports, query for specific patterns and relations, and manipulate models.

A pattern model is simply a collection of extracted patterns (any of the three categories) and their counts from a specific corpus. Pattern models come in two varieties:

  • Unindexed Pattern Model -- The simplest form, which simply stores the patterns and their count.
  • Indexed Pattern Model -- The more informed form, which retains all indices to the original corpus, at the cost of more memory/diskspace.

The Indexed Pattern Model is much more powerful, and allows more statistics and relations to be inferred.

The generation of pattern models is optionally parametrised by a minimum occurrence threshold, a maximum pattern length, and a lower-boundary on the different types that may instantiate a skipgram (i.e. possible fillings of the gaps).

Technical Details

Colibri Core is available as a collection of standalone command-line tools, as a C++ library, and as a Python library.

Please consult the full documentation at https://proycon.github.io/colibri-core

Installation instructions are here: https://proycon.github.io/colibri-core/doc/#installation

Publication

This software is extensively described in the following peer-reviewed publication:

van Gompel, M and van den Bosch, A (2016) Efficient n-gram, Skipgram and Flexgram Modelling with Colibri Core. Journal of Open Research Software 4: e30, DOI: http://dx.doi.org/10.5334/jors.105

Click the link to access the publication and please cite it if you make use of Colibri Core in your work.

Owner
Maarten van Gompel
Research software engineer - NLP - AI - 🐧 Linux & open-source enthusiast - 🐍 Python/ 🌊C/C++ / 🦀 Rust / 🐚 Shell - 🔐 Privacy, Security & Decentralisation
Maarten van Gompel
Comments
  • Unable to load large corpora into memory because PatternPointer length can't exceed 2^32 bytes (32 bit size descriptor)

    Unable to load large corpora into memory because PatternPointer length can't exceed 2^32 bytes (32 bit size descriptor)

    Whilst fine in most situations, this doesn't work for IndexedCorpus which loads an entire corpus into one PatternPointer. This prevents loading very large corpora (continuation of #41):

    Loading corpus data...
    Loaded 307725534 sentences; corpussize (bytes) = 9157735203
    ERROR: Pattern too long for pattern pointer [9157735203 bytes,explicit]
    terminate called after throwing an instance of 'InternalError'
      what():  Colibri internal error
    

    Simply setting the size descriptor to a 64 bit integer would waste too much memory in most other situation so isn't an option either. I think we need a more flexible solution through templating.

  • Missing data in indexed model on large data set; yields much lower counts than unindexed model on the same data with the same parameters!

    Missing data in indexed model on large data set; yields much lower counts than unindexed model on the same data with the same parameters!

    As reported by Pavel Vondřička, something fishy is going on in the computation of an indexed model on a large dataset (8.5GB compressed):

    Indexed:

    $ colibri-patternmodeller -l 1 -t 1 -f gigacorpus.colibri.dat                                                        
    Loading corpus data...
    Training model on  gigacorpus.colibri.dat
    Training patternmodel, occurrence threshold: 1
    Counting *all* n-grams (occurrence threshold=1)
     Found 2562104 ngrams... computing total word types prior to pruning...2562104...pruned 0...total kept: 2562104
    Sorting all indices...
    

    Unindexed (these are the correct):

    $ colibri-patternmodeller -u -l 1 -t 1 -f gigacorpus.colibri.dat
    Training unindexed model on  gigacorpus.colibri.dat
    Training patternmodel, occurrence threshold: 1
    Counting *all* n-grams (occurrence threshold=1)
     Found 11459477 ngrams... computing total word types prior to pruning...11459477...pruned 0...total kept: 11459477
    

    The encoded corpus file has been verified to be fine (i.e. it decodes properly):

    yes, I tried decoding the corpus back and it had a different size, but there was the whole contents - it seems that just some (white)spaces got lost, which is understandable. Anyway, the corpus wasn’t clipped.

    I did some tests and the problem does NOT reproduce on a small text (counts are equal there as expected), which also explains why it isn't caught by our automated tests. So the cause is not yet clear and further debugging is needed.

  • pip failed building wheel for colibricore Mac OSX 10.11.2

    pip failed building wheel for colibricore Mac OSX 10.11.2

    I brew installed the dependencies, but get "colibricore_wrapper.cpp:258:10: fatal error: 'unordered_map' file not found" error below after trying to pip install colibricore.

    coco)~/colibri-core - [master●] » pip install colibricore
    Collecting colibricore
      Using cached colibricore-2.1.2.tar.gz
    Requirement already satisfied (use --upgrade to upgrade): Cython>=0.23 in /Users/me/anaconda/envs/coco/lib/python3.4/site-packages (from colibricore)
    Building wheels for collected packages: colibricore
      Running setup.py bdist_wheel for colibricore
      Complete output from command /Users/me/anaconda/envs/coco/bin/python3 -c "import setuptools;__file__='/private/var/folders/6n/__f45xnx36q9r_fy3jg68tz8tn99rh/T/pip-build-hat3uagr/colibricore/setup.py';exec(compile(open(__file__).read().replace('\r\n', '\n'), __file__, 'exec'))" bdist_wheel -d /var/folders/6n/__f45xnx36q9r_fy3jg68tz8tn99rh/T/tmps16svvf_pip-wheel-:
      running bdist_wheel
      running build
      running build_ext
      cythoning colibricore_wrapper.pyx to colibricore_wrapper.cpp
      building 'colibricore' extension
      creating build
      creating build/temp.macosx-10.5-x86_64-3.4
      gcc -fno-strict-aliasing -DNDEBUG -g -fwrapv -O3 -Wall -Wstrict-prototypes -I/Users/me/anaconda/envs/coco/include -arch x86_64 -I/usr/local/include/colibri-core -I/usr/include/colibri-core -I/usr/include/libxml2 -I/Users/me/anaconda/envs/coco/include/python3.4m -c colibricore_wrapper.cpp -o build/temp.macosx-10.5-x86_64-3.4/colibricore_wrapper.o --std=c++0x
      colibricore_wrapper.cpp:258:10: fatal error: 'unordered_map' file not found
      #include <unordered_map>
               ^
      1 error generated.
      (Writing /private/var/folders/6n/__f45xnx36q9r_fy3jg68tz8tn99rh/T/pip-build-hat3uagr/colibricore/colibricore_wrapper.pyx)
      /Users/me/anaconda/envs/coco/lib/python3.4/distutils/extension.py:132: UserWarning: Unknown Extension options: 'pyrex_gdb'
        warnings.warn(msg)
      warning: colibricore_wrapper.pyx:1003:12: Unreachable code
      warning: colibricore_wrapper.pyx:1247:8: Unreachable code
      warning: colibricore_wrapper.pyx:2050:8: Unreachable code
      warning: colibricore_wrapper.pyx:2951:8: Unreachable code
      warning: colibricore_wrapper.pyx:3425:8: Unreachable code
      error: command 'gcc' failed with exit status 1
    
      ----------------------------------------
    Failed building wheel for colibricore
    Failed to build colibricore
    Installing collected packages: colibricore
    
    (coco)~/colibri-core - [master●] » brew --config
    HOMEBREW_VERSION: 0.9.5
    ORIGIN: https://github.com/Homebrew/homebrew
    HEAD: 2ae9b385ff174db4e1ac713f47a88c0e7034c516
    Last commit: 15 minutes ago
    HOMEBREW_PREFIX: /usr/local
    HOMEBREW_REPOSITORY: /usr/local
    HOMEBREW_CELLAR: /usr/local/Cellar
    HOMEBREW_BOTTLE_DOMAIN: https://homebrew.bintray.com
    CPU: 8-core 64-bit haswell
    OS X: 10.11.2-x86_64
    Xcode: 7.2
    CLT: 7.2.0.0.1.1447826929
    Clang: 7.0 build 700
    X11: N/A
    System Ruby: 2.0.0-p645
    Perl: /usr/bin/perl
    Python: /Users/me/anaconda/envs/coco/bin/python => /Users/me/anaconda/envs/coco/bin/python3.4
    Ruby: /usr/bin/ruby => /System/Library/Frameworks/Ruby.framework/Versions/2.0/usr/bin/ruby
    Java: 1.8.0_66
    
  • Wrong threshold in model.filter

    Wrong threshold in model.filter

    Hello! In this command options = colibricore.PatternModelOptions(mintokens=50, maxlength=6, doskipgrams=True) I set mintokens=50. But then I tried to extract skipgrams with a command self.model.filter(0, colibricore.Category.SKIPGRAM) Results look like threshold was 100 (I don't see any skipgram with occurence less than 100). Is it a bug or do I something wrong?

  • Discrepancy between totaloccurrencesingroup and patterns in getreverseindex

    Discrepancy between totaloccurrencesingroup and patterns in getreverseindex

    I'm training a 4-gram skipgram model with

    MINTOKENS = MINTOKENS_SKIPGRAMS = 2
    MINTOKENS_UNIGRAMS = 3
    MINLENGTH = 3
    MAXLENGTH = 4
    DOREVERSEINDEX = true
    DOSKIPGRAMS_EXHAUSTIVE = true
    

    with these numbers reported for the pattern model:

                                     PATTERNS         TOKENS       COVERAGE          TYPES
    Total:                                  -     1537297768              -        2425337
    Uncovered:                              -              0         0.0000        1718067
    Covered:                        273998512     1537297768         1.0000         707270
    
           CATEGORY      N (SIZE)        PATTERNS          TYPES    OCCURRENCES
                all            all      273998512         707270     3593418773
                all              2       16652489         707269      712369750
                all              3       75300479         582876     1205518415
                all              4      182045544         495923     1675530608
             n-gram            all      136902720         707269     1658562277
             n-gram              2       16652489         707269      712369750
             n-gram              3       52408087         580582      571966995
             n-gram              4       67842144         495586      374225532
           skipgram            all      137095792         553853     1934856496
           skipgram              3       22892392         553853      633551420
           skipgram              4      114203400         495923     1301305076
    

    trainPatternModel.totaloccurrencesingroup(0,4) reports there are 1675530608 patterns of length 4, whereas I get between 1904680000-1904700000 patterns (exact number is not reported by my code) with

    for(IndexedCorpus::iterator iter = indexedCorpus->begin(); iter != indexedCorpus->end(); ++iter)
            {
                for(PatternPointer patternp : trainPatternModel.getreverseindex(iter.index(), 0, 0, 4))
                { ...
    

    This is a difference of 13.7%.

    So what is the right way to get the number of patterns, after pruning and thresholding, indifferent of the pattern type?

  • Non-functioning constraints in .getrightneighbours(), .getcooc() etc.

    Non-functioning constraints in .getrightneighbours(), .getcooc() etc.

    I wanted to get only n-grams of a specific size following some other n-gram. However, I experienced that the output did not adhere to the given constraints, at least not as I expected. I've consulted the documentation to figure out if I simply misunderstood something; if so, please enlighten me. :-)

    Here is a working example (most of it taken from the tutorial notebook) which shows it:

    import colibricore
    from urllib.request import urlopen
    
    
    TMPDIR = '/tmp/'
    corpusfile_plato_plaintext = TMPDIR + "republic.txt"
    classfile_plato = TMPDIR + "republic.colibri.cls"
    corpusfile_plato = TMPDIR + "republic.colibri.dat"
    
    f = urlopen('http://lst.science.ru.nl/~proycon/republic.txt')
    with open(corpusfile_plato_plaintext,'wb') as of:
        of.write(f.read())
    print("Downloaded to " + corpusfile_plato_plaintext)
    
    # make encoder, encode corpus and make decoder
    classencoder = colibricore.ClassEncoder(classfile_plato)
    classencoder.build(corpusfile_plato_plaintext)
    classencoder.save(classfile_plato)
    classencoder.encodefile(corpusfile_plato_plaintext, corpusfile_plato)
    classdecoder = colibricore.ClassDecoder(classfile_plato)
    
    # set options and train model
    options = colibricore.PatternModelOptions(mintokens=2, maxlength=8,
                                              doskipgrams=True)
    corpus_plato = colibricore.IndexedCorpus(corpusfile_plato)
    model = colibricore.IndexedPatternModel(reverseindex=corpus_plato)
    model.train(corpusfile_plato, options)
    
    # make ngram and get its neighbours under different constraints
    ngram = classencoder.buildpattern("the law")
    no_constraint = {(pattern, count)
                     for pattern, count in model.getrightneighbours(ngram, 1)}
    
    only_bigrams = {(pattern, count)
                     for pattern, count in model.getrightneighbours(ngram, 1, size=2)}
    
    # we'd expect nothing besides bigrams, but ...
    for pattern, count in only_bigrams:
        if not pattern.isskipgram() and len(pattern) != 2:
            print('Found a non-bigram where I should not!: ',
                  pattern.tostring(classdecoder))
            break
    
    only_ngrams = {(pattern, count)
                   for pattern, count in model.getrightneighbours(
            ngram, 1, category=colibricore.Category.NGRAM
        )}
    # we'd expect no skipgrams, but ...
    for pattern, count in only_ngrams:
        if pattern.isskipgram():
            print('Found a skipgram where I should not!',
                  pattern.tostring(classdecoder))
            break
    
    

    Output:

    Found a non-bigram where I should not!:  ; at the same time
    Found a skipgram where I should not! ; {*} their
    

    Similar things happen for cooc methods and left neighbours.

  • Error with Tibetan Unicode

    Error with Tibetan Unicode

    I'm working on a Tibetan language corpus and I get the following error message with the patternmodeller:

    Loading pattern model legya.colibri.dat as model... File is not a colibri model file (or a very old one) terminate called after throwing an instance of 'InternalError' what(): Colibri internal error

    The command was:

    colibri-patternmodeller -i legya.colibri.dat -t 10 -l 20 -T 3 -o legya.colibri.indexedpatternmodel
    

    classdecode spat out the Unicode without complaining, idem for the script colibri-ngrams...

    Here's the file: legya.txt

  • Can't compile on CentOS 6.6

    Can't compile on CentOS 6.6

    I'm getting the following errors (gcc 4.4.7):

    # pip3 install colibricore
    [...]
        Bootstrapping colibri-core
        Autoconf archive found in /usr/share/aclocal/, good
        configure.ac:36: warning: AC_LANG_CONFTEST: no AC_LANG_SOURCE call detected in body
        ../../lib/autoconf/lang.m4:193: AC_LANG_CONFTEST is expanded from...
        ../../lib/autoconf/general.m4:2661: _AC_LINK_IFELSE is expanded from...
        ../../lib/autoconf/general.m4:2678: AC_LINK_IFELSE is expanded from...
        /usr/share/aclocal/libtool.m4:1022: _LT_SYS_MODULE_PATH_AIX is expanded from...
        /usr/share/aclocal/libtool.m4:4161: _LT_LINKER_SHLIBS is expanded from...
        /usr/share/aclocal/libtool.m4:5236: _LT_LANG_C_CONFIG is expanded from...
        /usr/share/aclocal/libtool.m4:138: _LT_SETUP is expanded from...
        /usr/share/aclocal/libtool.m4:67: LT_INIT is expanded from...
        configure.ac:36: the top level
    [...]
        libtool: compile:  g++ -DHAVE_CONFIG_H -I. -I.. -I../include -Wall -O3 -g -O2 -std=gnu++0x -MT pattern.lo -MD -MP -MF .deps/pattern.Tpo -c pattern.cpp  -fPIC -DPIC -o .libs/pattern.o
        In file included from ../include/patternstore.h:19,
                         from pattern.cpp:2:
        ../include/datatypes.h: In member function `std::string IndexReference::tostring() const':
        ../include/datatypes.h:73: error: call of overloaded `to_string(uint32_t)' is ambiguous
        /usr/lib/gcc/x86_64-redhat-linux/4.4.7/../../../../include/c++/4.4.7/bits/basic_string.h:2604: note: candidates are: std::string std::to_string(long long int)
        /usr/lib/gcc/x86_64-redhat-linux/4.4.7/../../../../include/c++/4.4.7/bits/basic_string.h:2610: note:                 std::string std::to_string(long long unsigned int)
        /usr/lib/gcc/x86_64-redhat-linux/4.4.7/../../../../include/c++/4.4.7/bits/basic_string.h:2616: note:                 std::string std::to_string(long double)
        ../include/datatypes.h:73: error: call of overloaded `to_string(unsigned int)' is ambiguous
        /usr/lib/gcc/x86_64-redhat-linux/4.4.7/../../../../include/c++/4.4.7/bits/basic_string.h:2604: note: candidates are: std::string std::to_string(long long int)
        /usr/lib/gcc/x86_64-redhat-linux/4.4.7/../../../../include/c++/4.4.7/bits/basic_string.h:2610: note:                 std::string std::to_string(long long unsigned int)
        /usr/lib/gcc/x86_64-redhat-linux/4.4.7/../../../../include/c++/4.4.7/bits/basic_string.h:2616: note:                 std::string std::to_string(long double)
        ../include/datatypes.h: In member function `void IndexedData::shrink_to_fit()':
        ../include/datatypes.h:151: error: `class std::vector<IndexReference, std::allocator<IndexReference> >' has no member named `shrink_to_fit'
        In file included from pattern.cpp:2:
        ../include/patternstore.h: In member function `void PatternSet<ReadWriteSizeType>::reserve(size_t)':
        ../include/patternstore.h:704: error: `class t_patternset' has no member named `reserve'
        pattern.cpp: In member function `const bool PatternPointer::unknown() const':
        pattern.cpp:408: warning: comparison between signed and unsigned integer expressions
        pattern.cpp: In constructor `Pattern::Pattern(std::istream*, bool, unsigned char, const unsigned char*, bool)':
        pattern.cpp:528: warning: comparison between signed and unsigned integer expressions
        make[2]: *** [pattern.lo] Error 1
        make[2]: Leaving directory `/home/avcrane1/src/colibri-core/tmp/pip-build-1al7wmwo/colibricore/src'
        make[1]: *** [all-recursive] Error 1
        make[1]: Leaving directory `/home/avcrane1/src/colibri-core/tmp/pip-build-1al7wmwo/colibricore'
        make: *** [all] Error 2
        Make of colibri-core failed
    
  • skipgram training adds strange ngrams that do not exist

    skipgram training adds strange ngrams that do not exist

    $ colibri-patternmodeller -c input.colibri.cls -f input.colibri.dat -o input.colibri.patternmodel -t 1 -l 4 -m 4 -u -P | cut -f1 > ngrams
    $ colibri-patternmodeller -c input.colibri.cls -f input.colibri.dat -o input.colibri.patternmodel -t 1 -l 4 -m 4 -u -s  -P | cut -f1 > ngramsskipgrams 
    $ cat ngramsskipgrams | grep -v "{*}" > ngramsskipgrams.filtered
    $ wc -l ngrams*
        3001 ngrams
        11339 ngramsskipgrams
        5070 ngramsskipgrams.filtered
    

    Example upon inspection of data:

    existing good ngram: 10 December 2007 imposing additional bad ngram: 10 December Other imposing

  • Problems compiling with anaconda

    Problems compiling with anaconda

    I had two minor issues while building from source:

    1. First the installation aborted with the following error:
    libtool: Version mismatch error.  This is libtool 2.4.6, but the
    libtool: definition of this LT_INIT comes from libtool 2.4.6.42-b88ce.
    libtool: You should recreate aclocal.m4 with macros from libtool 2.4.6
    libtool: and run autoconf again.
    make[2]: *** [Makefile:798: SpookyV2.lo] Error 63
    make[2]: Leaving directory '/home/marco/PycharmProjects/colibri-core/src'
    make[1]: *** [Makefile:466: all-recursive] Error 1
    make[1]: Leaving directory '/home/marco/PycharmProjects/colibri-core'
    make: *** [Makefile:375: all] Error 2
    Make of colibri-core failed
    

    I solved this error as suggested by recreating aclocal.m4 using autoreconf --force --install

    1. Afterwards the compiling aborted again with the following error:
    /home/marco/anaconda3/envs/MedInf/compiler_compat/ld: build/temp.linux-x86_64-3.7/colibricore_wrapper.o: unable to initialize decompress status for section .debug_info
    build/temp.linux-x86_64-3.7/colibricore_wrapper.o: file not recognized: file format not recognized
    collect2: error: ld returned 1 exit status
    

    I solved this problem with a strange workaround by giving condas ld another name so the system wide ld was used.

    I'm not sure if you are in the position to solve those problems, but I leave this here, so maybe I save others some time.

  • added & to te sure. But refactoring woule be better (no loop needed)

    added & to te sure. But refactoring woule be better (no loop needed)

    I suggest using on line 49 IN->read( (char*)buffer, length) in stead of the loop: for (int i = 0; i < length; i++) { IN->read((char*) &buffer[i], sizeof(unsigned char)); }

  • [Queries] Ability to create a model and cls from multiple input files

    [Queries] Ability to create a model and cls from multiple input files

    Hi,

    To begin with, Thank you.. For the amazing work you've done so far.. I have a few questions regarding my usage of colibric-core in my project

    What I am trying to build is a model that learns recurring patterns from a set of input text files. These are log files of a collection of software components.

    Each line in my log file is converted to a unique hash representing that line, and the input to the training is a single line whose words are the hashes, word count is equal to the line count of the actual log file. This is done to generate patterns across lines and not words.

    The model is then used to analyse whether patterns in a given test file matches against the training data, to detect any anomalies or unknown patterns. I am using your library for it's ability of creating variable length ngrams, skipgrams and flexgrams. The questions that I have are as follows -

    1. How do I create a unified model and class file, that contains patterns learnt from multiple input files
    2. Do I save the class file and model after every instance of model trained from an input file, or can I train from multiple input files and then finally call .save/ ,write
    3. Is there a way to perform this training on multiple cores, while saving the information to a single model? Multithreading?
    4. Alternatively is it possible to create temporary multiple models through a batch operation and then somehow merge them together to a single model file and .cls file?
    5. Also, I see random crashes some times while parsing a file. Re-running the training on the same file again sometimes results in a crash at the same point, and sometimes doesn't, which is weird. I'll try to get the backtraces for those crashes whenever i reproduce the issue again..

    I am willing to contribute any changes done in regards to the above requirements if you could just guide me. I have also attached the relevant code that shows my usage of the library.

    train_program.py.zip

  • Class encoding fails if input only contains one line without new line?

    Class encoding fails if input only contains one line without new line?

    Discovered by @fkunneman; output file was only 2-bytes (the initial null byte and version marker).

    Input text was just: prachtig apparaat en droogt goed kreukelvrij fijn de verlichting binnenin voelt heel robuust en ziet er ook erg leuk uit

    Also verify this doesn't imply we lose the last sentence on larger encodings (can't imagine it does as the tests probably cover this, but better check).

  • Investigate improved scalability using use of out-of-memory datastructures

    Investigate improved scalability using use of out-of-memory datastructures

    The following library could be pluggable into our current framework:

    STXXL implements containers and algorithms that can process huge volumes of data that only fit on disks.: http://stxxl.sourceforge.net/

  • Load corpora with mmap

    Load corpora with mmap

    Would it be possible to load copora with mmap? This would make it possible to work with corpora larger than the available RAM, and is much more efficient if only a small part of a file is going to be used anyway.

Scalable, Portable and Distributed Gradient Boosting (GBDT, GBRT or GBM) Library, for Python, R, Java, Scala, C++ and more. Runs on single machine, Hadoop, Spark, Dask, Flink and DataFlow
Scalable, Portable and Distributed Gradient Boosting (GBDT, GBRT or GBM) Library,  for Python, R, Java, Scala, C++ and more. Runs on single machine, Hadoop, Spark, Dask, Flink and DataFlow

eXtreme Gradient Boosting Community | Documentation | Resources | Contributors | Release Notes XGBoost is an optimized distributed gradient boosting l

Dec 30, 2022
BLLIP reranking parser (also known as Charniak-Johnson parser, Charniak parser, Brown reranking parser) See http://pypi.python.org/pypi/bllipparser/ for Python module.

BLLIP Reranking Parser Copyright Mark Johnson, Eugene Charniak, 24th November 2005 --- August 2006 We request acknowledgement in any publications that

Dec 17, 2022
Yggdrasil Decision Forests (YDF) is a collection of state-of-the-art algorithms for the training, serving and interpretation of Decision Forest models.
Yggdrasil Decision Forests (YDF) is a collection of state-of-the-art algorithms for the training, serving and interpretation of Decision Forest models.

Yggdrasil Decision Forests (YDF) is a collection of state-of-the-art algorithms for the training, serving and interpretation of Decision Forest models. The library is developed in C++ and available in C++, CLI (command-line-interface, i.e. shell commands) and in TensorFlow under the name TensorFlow Decision Forests (TF-DF).

Jan 9, 2023
libsvm websitelibsvm - A simple, easy-to-use, efficient library for Support Vector Machines. [BSD-3-Clause] website

Libsvm is a simple, easy-to-use, and efficient software for SVM classification and regression. It solves C-SVM classification, nu-SVM classification,

Jan 2, 2023
C-based/Cached/Core Computer Vision Library, A Modern Computer Vision Library

Build Status Travis CI VM: Linux x64: Raspberry Pi 3: Jetson TX2: Backstory I set to build ccv with a minimalism inspiration. That was back in 2010, o

Jan 6, 2023
RP-VIO: Robust Plane-based Visual-Inertial Odometry for Dynamic Environments (Code & Dataset)
RP-VIO: Robust Plane-based Visual-Inertial Odometry for Dynamic Environments (Code & Dataset)

RP-VIO: Robust Plane-based Visual-Inertial Odometry for Dynamic Environments RP-VIO is a monocular visual-inertial odometry (VIO) system that uses onl

Jan 6, 2023
Edge ML Library - High-performance Compute Library for On-device Machine Learning Inference
 Edge ML Library - High-performance Compute Library for On-device Machine Learning Inference

Edge ML Library (EMLL) offers optimized basic routines like general matrix multiplications (GEMM) and quantizations, to speed up machine learning (ML) inference on ARM-based devices. EMLL supports fp32, fp16 and int8 data types. EMLL accelerates on-device NMT, ASR and OCR engines of Youdao, Inc.

Jan 7, 2023
A lightweight C++ machine learning library for embedded electronics and robotics.

Fido Fido is an lightweight, highly modular C++ machine learning library for embedded electronics and robotics. Fido is especially suited for robotic

Dec 17, 2022
MITIE: library and tools for information extraction

MITIE: MIT Information Extraction This project provides free (even for commercial use) state-of-the-art information extraction tools. The current rele

Dec 29, 2022
A C++ standalone library for machine learning

Flashlight: Fast, Flexible Machine Learning in C++ Quickstart | Installation | Documentation Flashlight is a fast, flexible machine learning library w

Jan 8, 2023
mlpack: a scalable C++ machine learning library --
mlpack: a scalable C++ machine learning library --

a fast, flexible machine learning library Home | Documentation | Doxygen | Community | Help | IRC Chat Download: current stable version (3.4.2) mlpack

Dec 30, 2022
Open Source Computer Vision Library

OpenCV: Open Source Computer Vision Library Resources Homepage: https://opencv.org Courses: https://opencv.org/courses Docs: https://docs.opencv.org/m

Jan 1, 2023
oneAPI Data Analytics Library (oneDAL)
oneAPI Data Analytics Library (oneDAL)

Intel® oneAPI Data Analytics Library Installation | Documentation | Support | Examples | Samples | How to Contribute Intel® oneAPI Data Analytics Libr

Dec 30, 2022
A C library for product recommendations/suggestions using collaborative filtering (CF)

Recommender A C library for product recommendations/suggestions using collaborative filtering (CF). Recommender analyzes the feedback of some users (i

Dec 29, 2022
RNNLIB is a recurrent neural network library for sequence learning problems. Forked from Alex Graves work http://sourceforge.net/projects/rnnl/

Origin The original RNNLIB is hosted at http://sourceforge.net/projects/rnnl while this "fork" is created to repeat results for the online handwriting

Dec 26, 2022
An open library of computer vision algorithms

VLFeat -- Vision Lab Features Library Version 0.9.21 The VLFeat open source library implements popular computer vision algorithms specialising in imag

Dec 29, 2022
FoLiA library for C++

Libfolia: FoLiA Library for C++ Libfolia (c) CLS/ILK 2010 - 2021 Centre for Language Studies, Radboud University Nijmegen Induction of Linguistic Know

Dec 31, 2021